Competitive Disconnection Detection in On-Line Mobile Robot Navigation
نویسندگان
چکیده
This paper is concerned with target unreachability detection during on-line mobile robot navigation in an unknown planar environment. Traditionally, competitiveness characterizes an on-line navigation algorithm in cases where the target is reachable from the robot’s start position. This paper introduces a complementary notion of competitiveness which characterizes an on-line navigation algorithm in cases where the target is unreachable. The disconnection competitiveness of an on-line navigation algorithm measures the path length it generates in order to conclude target unreachability relative to the shortest off-line path that proves target unreachability from the same start position. It is shown that only competitive navigation algorithms can possess disconnection competitiveness. A competitive on-line navigation algorithm for a disc-shaped mobile robot, called CBUG, is described. This algorithm has a quadratic competitive performance, which is also the best achievable performance over all on-line navigation algorithms. The disconnection competitiveness of CBUG is analyzed and shown to be quadratic in the length of the shortest off-line disconnection path. Moreover, it is shown that quadratic disconnection competitiveness is the best achievable performance over all on-line navigation algorithms. Thus CBUG achieves optimal competitiveness both in terms of connection and disconnection paths. Examples illustrate the usefulness of a doubly competitive algorithm in terms of path stability.
منابع مشابه
Navigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملA New Method of Mobile Robot Navigation: Shortest Null Space
In this paper, a new method was proposed for the navigation of a mobile robot in an unknown dynamic environment. The robot could detect only a limited radius of its surrounding with its sensors and it went on the shortest null space (SNS) toward the goal. In the case of no obstacle, SNS was a direct path from the robot to goal; however, in the presence of obstacles, SNS was a space around the r...
متن کاملA New Method of Mobile Robot Navigation: Shortest Null Space
In this paper, a new method was proposed for the navigation of a mobile robot in an unknown dynamic environment. The robot could detect only a limited radius of its surrounding with its sensors and it went on the shortest null space (SNS) toward the goal. In the case of no obstacle, SNS was a direct path from the robot to goal; however, in the presence of obstacles, SNS was a space around the r...
متن کاملMobile Robot Navigation Error Handling Using an Extended Kalman Filter
Obviously navigation is one of the most complicated issues in mobile robots. Intelligent algorithms are often used for error handling in robot navigation. This Paper deals with the problem of Inertial Measurement Unit (IMU) error handling by using Extended Kalman Filter (EKF) as an Expert Algorithms. Our focus is put on the field of mobile robot navigation in the 2D environments. The main chall...
متن کاملMobile Robot Navigation Error Handling Using an Extended Kalman Filter
Obviously navigation is one of the most complicated issues in mobile robots. Intelligent algorithms are often used for error handling in robot navigation. This Paper deals with the problem of Inertial Measurement Unit (IMU) error handling by using Extended Kalman Filter (EKF) as an Expert Algorithms. Our focus is put on the field of mobile robot navigation in the 2D environments. The main chall...
متن کامل